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1. INTRODUCTION

Metastability is observed in many different systems close to a first order
phase transition. It is a dynamical phenomenon (see, for instance, [PL])
not included in the Gibbsian formalism, which is so successful for the
description of stable equilibrium states [LR, I. The development of a full
theory of metastability is desirable for its intrinsic as well as for its
experimental and technological interest and it also poses challenging math-
ematical problems (see [CGOV, OS1, OS2]).

The metastable behavior of the nearest neighbor two dimensional
Ising model for large finite volumes and small magnetic fields was analyzed
in [NS1, NS2] in the zero temperature limit in the framework of the
"pathwise approach" introduced in [CGOV]. In [S1] R. Schonmann,
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We investigate metastability in the two dimensional Ising model in a square
with free boundary conditions at low temperatures. Starting with all spins down
in a small positive magnetic field, we show that the exit from this metastable
phase occurs via the nucleation of a critical droplet in one of the four corners
of the system. We compute the lifetime of the metastable phase analytically in
the limit T-> 0, h->0 and via Monte Carlo simulations at fixed values of T and
h and find good agreement. This system models the effects of boundary domains
in magnetic storage systems exiting from a metastable phase when a small external
field is applied.
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using arguments based on reversibility, described in detail the typical
escape paths from the metastable to the stable regime. Other regimes, very
interesting from the physical point of view and mathematically much more
complicated (finite temperature, infinite lattice and zero magnetic field), are
considered in [S2] and [SS]. The finite temperature case has also been
widely studied by Monte Carlo methods, for instance in [B, BM, BS,
TM1]; a complete and clear description of these numerical results can be
found in [RTMS], This case has also been studied by means of transfer-
matrix and constrained-transfer-matrix methods in [PS1, PS2, GRN].

In the same asymptotic regime as in [NS1], different Ising-like
hamiltonians have been considered in [KO1, KO2, NO] and the three
dimensional nearest neighbor Ising model has been studied in [BC]. In
[CO] the Blume-Capel model has been studied (see also [FGRN] for a
study of a version of this model with weak long range interactions) and in
[OS1, OS2] the problem of metastability has been investigated in a more
general case.

While the above works considered systems with periodic boundary
conditions, the Ising model with more general boundary conditions, such
as semiperiodic, circular and octogonal domains has been studied in
[RKLRN], see also [SG]. In this note we study the case of a finite lattice
with free boundary conditions at low temperatures and small magnetic
fields using both rigorous analysis and Monte Carlo simulations.

The case of free boundary conditions is of some technological interest:
during the recording process on magnetic tapes different parts of the
magnetized material consisting of fine magnetic particles are exposed to dif-
ferent magnetic fields, resulting in domains with different orientation of the
magnetization. In order to be used as storage devices, these materials must
be able to retain their magnetization for long periods in weak arbitrarily
oriented magnetic fields. The study of the escape from a metastable phase
in a periodic system neglects the effects of boundary domains. Such effects
are modeled here by considering a lattice with free boundary conditions.

We find that although the main features of the nucleation of the stable
phase are not changed, some interesting new aspects arise: in particular one
can say a priori where the nucleation of the stable phase will start, that is
where the critical droplet will show up.

The model and results are described in Section 2 and analyzed in
Section 3 and 4. Section 5 is devoted to some brief conclusions.

2. THE MODEL AND THE RESULTS

Let us consider a two dimensional Ising model defined on a finite
square A = {1,..., M}2cZ2 with free boundary conditions. The space of
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configurations is denoted by Q = { — 1, + 1}A and to each configuration
a e Q is associated the energy

where the first sum runs over all the pairs of nearest neighbors in A and J,
h > 0. The equilibrium states are described by the Gibbs measure

where (1 is the inverse temperature.
The time evolution of the model is given by the Metropolis algorithm:

given a configuration a at time t, we pick a site x at random and then
change a(x) to —a(x) with probability 1 if AH is >0 and e x p ( - B A H ) if
AH>0.

It is easy to show that this dynamics is reversible with respect to the
measure (2.2), hence, the unique invariant measure of the process is the
equilibrium Gibbs measure. The problem we want to study is the way in
which a system approaches the equilibrium state when it is prepared in the
configuration with all the spins equal to minus one (a0= — 1) and the
magnetic field h is chosen positive but small with respect to the coupling
constant J (h/J< 1), while B is very large.

In [NS1, RTMS, S1, TM1] this problem was studied in a box with
periodic boundary conditions: it was shown that for /? sufficiently large and
h small enough, depending on the size of the box, the system shows
metastable behavior. (The larger the box the larger /? has to be.) This
means that the system spends a long time T p , b ~ e x p ( ( i ( 4 J 2 / h ) ) in a phase
with negative magnetization performing random wanderings near the con-
figuration — 1. These wanderings are characterized by the formation of
small droplets of pluses inside the sea of minuses which disappear quickly;
their typical life time TS

,b is much shorter than the lifetime of the meta-
stable state ( T S , « T p , b ) .

A droplet of pluses will tend to grow however if it is large enough, i.e.
when its dimension is larger than a critical length, l* = [2J/h] + 1, where
[a] is the integer part of the real number a. The exit from the metastable
phase is achieved, then, when a sufficiently large droplet shows up some-
where in the lattice: this droplet is called protocritical and in the limit
/?-» QO it is a square droplet with sides /*. When this protocritical droplet
appears, it grows and covers the whole lattice in a time Tg_ ̂  which is very
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small compared to the lifetime of the metastable phase. It has been shown
that T s

, B « T g
, b < < T p , b

In our case of free boundary conditions we show, rigorously in the
limit /? -> oo and via Monte Carlo simulations for /? large, that the system
exhibits metastability and that the lifetime of this metastable phase is
TB~exp(B(J2 /h))- This exit time is much smaller than in the case of peri-
odic boundary conditions. This is a consequence of the fact that the
tendency of a droplet to grow is favoured when such a droplet has one of
its sides on the boundary of the domain or at a distance one from it.
Indeed, we have to introduce two different critical lengths, A1 and A2, which
refer respectively to droplets close to any part and far from the boundary.
In the limit (S -» oo we find

with J and h fixed such that J/h > 1.
Finally, we remark that the exit from the metastable phase occurs

through a critical seed which appears in one of the four corners of the
lattice. It grows in a time T B ~ e x p ( B ( J — h)) to cover the whole domain.
Hence, in this case the position of the nucleation seed in the lattice can be
predicted a priori. In [RKLRN] it was observed that in the case of semi-
periodic boundary conditions the critical droplet can show up on one of
the two sides where the periodic boundary conditions are not imposed.
This decay mode was previously noted by Tomita and Miyashita [TM2],
In [Sh] it has been shown that this phenomenon is responsible for the
peculiar behavior of the large deviations probability in the case of free
boundary conditions.

3. NUMERICAL RESULTS

In this section we describe some simulation results obtained using the
Metropolis algorithm for an M by M square at low temperature and small
magnetic fields; the typical values which have been used in the numerical
experiments are B>2, h<0.5, and J=1. This range of parameters is dif-
ferent from those considered, for instance, in [RTMS, TM1] and referen-
ces therein, e.g. in [RTMS] they considered the case J=1, B= 1.102 and
h varying approximately in the range 0.04 < h< 0.9.

To obtain a numerical estimate of the critical lengths A1, A2 we fixed
ft and h and prepared the system in the configuration a = — 1 except for a
plus droplet of size / in the corner of the square; the size of the square was
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chosen M = l + 5. We considered decreasing values of / and in each experi-
ment we found the smallest value of l such that the droplet grew. We took
this as an estimate of the critical length A1. The length A2 was measured in
a similar way; the droplet now being placed at the center of the lattice.

Figure 1 presents an average over 60 independent determinations of A1

and A2 with inverse temperature /?= 10, and /? = 6 respectively. The solid
and dashed lines represent the theoretical values (2.3), valid in the limit
/?->oc, while the black circles and black squares are, respectively, the
numerical estimates of the critical lengths A1 and A2. The error bars have
been omitted because the statistical errors, evaluated as the empirical
standard deviation over the square root of the number of experiments, were
found to be very small. The agreement between the numerical result and
the theoretical prediction is very good although the former do not show the
staircase structure very clearly—due no doubt to the fact that ft, while
large, is not infinite. Low temperature calculations in the case of periodic
boundary conditions were performed in [N1, LNR, N2].

We remark that the number of Monte Carlo steps per site (MCS) one
has to wait in order to see the growth of the droplet greatly increases as
the value of the magnetic field h is decreased; indeed this time, for /? large,

Fig. 1. The critical lengths G1 and G2 as functions of the magnetic field h. The solid and
dashed lines represent the theoretical prediction (2.3) in the limit /?-» x; the black circles and
the black squares are, respectively, the numerical estimates of G1, at /?= 10 and G2., at /? = 6.

822/90/1-2-15
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is approximately given by exp fi(J-h) and exp fi(2J — h) respectively in the
case of a droplet close to or far from the boudary of the domain. The
smallest magnetic field we have considered is h = 0.02: in this case we have
set M = 56 and the number of MCS needed to see the shrinking or growth
of the droplet was approximatively 105.

In Fig. 2 we have plotted the magnetization per spin of the whole box
m0 and the magnetization per spin m 1 ,m 2 ,m 3 and m4 evaluated in four
square boxes of side A1 placed at the four corners of the lattice, as functions
of the number of iterations (time) in a single history of the system obtained
after preparing the system in the starting configuration — 1. In both pic-
tures the solid line represents the magnetization of the whole lattice m0,
while the other lines refer to m1, m2, m3 and m4. The top graph in Fig. 2

Fig. 2. The solid line represents the average magnetization of the whole lattice m0 the other
lines represent m 1 ,m 2 ,m 3 and m4. The top figure corresponds to the case /?=3, h = 0.24
(A1 =5) and M= 16; the bottom one to 0 = 2, h = 0.14 (G1 =8) and M = 32.



refers to the case where B = 3, h = 0.24 (I1 = 5) and M = 16; the one below
has been obtained with ft = 2, h = 0.14 (A1 = 8) and M = 32.

In both cases it is clear that the system stays for a long time (about
104 MCS) in the configuration — 1: the thermal fluctuations, visible for
/? = 2, are negligible for B = 3. After this long time the magnetization in one
of the corner boxes flips to one (nucleation of the protocritical droplet);
once this rare event has happened, all the other magnetizations start to
grow and quickly reach the value +1; that is the system quickly reaches
the equilibrium state.

Finally, we have evaluated the lifetime of the metastable state. In
[RTMS, MT] and references therein the lifetime of the metastable state
has been estimated at temperature T = 0.8TC, where Tc is the Onsager criti-
cal temperature, corresponding to our /?= 1.102. As the magnetic field is
varied, four different regimes are detected (see [RTMS] for a detailed
description of these different regimes); at low values of the magnetic field
they find that the logarithm of the lifetime of the metastable state is a linear
function of the inverse of the magnetic field. They call this the "single-
droplet region," meaning that the nucleation of the stable state is achieved
via the formation of a single critical droplet, see also [RKLRN, TM2].

In Fig. 3 we have plotted our numerical measurements of the escape
time Tb versus the inverse of the magnetic field. It is clear that when the
temperature is decreased the numerical results approach the theoretical
value

which by Theorem 1.1 is valid in the limit of zero temperature. The numerical
data have been fitted with a linear function 1/blogTb = mp1/h + nb; the
values of mb and np are listed in Table 1. It is clear that the trend with

Table 1. Results of the Linear Fit
(1/p) logTb=mB(1/h)+nb of the Data

in Fig. 3, for P -> <x>, mB->-1, nB->co

ft

1. 00
1. 25
1. 50
1. 75
2.00

mB

0.216
0.312
0.483
0.629
0.782

nB

1.816
1.173
0.669
0.378
0.083
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increasing ft is correct, although the value (3.1) would be reached only for much
larger values of ft. Such simulation would require very long computer time.

We remark that (3.1) is valid in the limit of zero temperature, while
in the case of finite temperature it is only an approximation of the correct
behavior TB= C(b) h-3 e x p { B F c ( B , h)} where C(ft) is a model dependent
function of the temperature and Fc, (B,h) is the free energy cost of a critical
droplet [N1, N2, LNR, RG] Fitting our data by means of this expression
does not give a good result; in order to improve this fit we should consider
smaller values of the external field.

The results in Fig. 3 have been obtained in the case M — 32 and are
the average of 60 different histories. We have checked that very similar
results are obtained if one considers larger domains (for instance
M = 64, 128) but have not performed extensive statistics in these situations
because the behavior of TB at small values of the magnetic field and very
low temperatures does not depend on the size of the lattice (this is confirmed
by the results in [RTMS], see Fig. 2 there). Finally, we remark that the
linearity of the logarithm of TB, is lost when l/h is small enough, this is
because for h large enough the system is in the multi-droplet regime.

Fig. 3. Numerical estimates of log Tb plotted versus 1/h for different values of the inverse
temperature /?. Empty circles, black squares, black upward triangles, black downward
triangles and black circles refer respectively to /?= 1.00, 1.25, 1.50, 1.75, 2.00. All the results are
averages over 60 different histories for M = 32. The solid line is the graph of a linear function
with slope equal to 1.
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4. RIGOROUS RESULTS

We list some definitions and notations which are necessary to discuss
our rigorous results:

1. The spin configurations a,nEQ, are called nearest neighbor con-
figurations iff 3xe A such that n = ax, where a* is the configuration
obtained by flipping in a the spin at site jc. A path is a sequence of con-
figurations a 0 a 1 - - - a n such that for i=1,...,n, ai-1 and ai are nearest
neighbors. A path a 0 a 1 - - - a n is called downhill iff H ( a i + 1 ) <H(oi) for
i=0, l,...,n-l.

2. Given A c Q, rj e Q we define the hitting or first passage time

where an is the stochastic process starting from the configuration n.

3. A local minimum of the Hamiltonian is a configuration er such that
one has

A local minimum will also be called a stable configuration because
starting from it the system will not move for a time which is exponentially
long in the inverse temperature ft.

4. The set of all the local minima is denoted by M c Q.

5. Given neM, we consider the process starting from n and say

We observe that since h is the smallest possible difference of energy
between two nearest neighbor configurations, hence after

steps a downhill path must necessarily end in a local minimum.

where P( X) is the probability of the event X.

6. Given a e M we define its basin of attraction



Fig. 4. Example of a rectangular droplet which is not a local minimum.
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7. Given E<Q,^ is connected iff vn, aeS 3 a path w<H starting
from o and ending in n; we will say that this path connects a to n.

8. Given a connected set G<2, we will call the boundary of ^ the set

9. Given two rectangles R1 and R2 on the dual lattice A + ( 1 , 1 ) , we
say that R1 and R2 are interacting rectangles iff R1 and R2 intersect or
are separated by one lattice spacing. If two such rectangles have only two
corners at distance one, then they are considered not interacting.

Let h > 0 and start the system from the configuration a0 = — 1. We will
now describe how the stable configuration +1 is approached and we will
evaluate how long the system remains in the metastable phase. To do this
we first characterize the local minima of the hamiltonian (2.1).

Lemma 1.1. Let us consider model (2.1) with J > h > 0 and M > 2.
Then ae M iff a(x) = — 1 Vxe A except for sites which are inside some rec-
tangles R1,..., Rn laying on the dual lattice A + (1 ,1 ) such that Vz, j= 1,..., n
a n d i = j

(i) Ri and Rj are not interacting

(ii) Ri has sides of length greater than two

(iii) Ri cannot have one of its sides on the "border" of A and one of
its two other sides perpendicular to this one at a distance one from the
border (see Fig. 4).

Remarks. 1. We denote by R( l 1 , l 2 ) with 2 <l1, 12 < M the set of
all configurations with all spins — 1 except for those inside a rectangle with
sides l1 and l2 and such that they are local minima.

2. Given a local minimum oe R(l1,l2 ) we denote it by Rl,m where

3. We denote by R<=M the set of all local minima containing only
one rectangle of pluses.
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Now, we state under which conditions a local minimum is subcritical,
that is we describe the evolution of the system starting from a stable con-
figuration. Consider a local minimum R l , m eR:

Lemma 1.2. When each side of Rl ,m is at least at distance two from
the border of the lattice, then given e > 0 one has

(i) l<A 2 = R l , m is subcritical and

When at least one of the sides of Rl,m is at distance one from the
border of the square or is laying on it, then given e > 0 one has

(i) l<A1 , m < M — 1 = > R l , m i s subcritical and

(ii) l> A2 =Rl,m is supercritical and

(ii) l>A1 =>Rl,m is supercritical and

Remarks. 1. In the second case, if m = M then the local minimum
is supercritical, no matter how long the smallest side / is.

2. If one considers a local minimum with more than one rectangle,
then this local minimum is subcritical iff all its rectangles are "subcritical"
(abuse of language).

3. It is possible to prove a stronger version of Lemma 1.2 that gives
rise to a more detailed description of the contraction or the growth of the
droplet (see Lemma 3 and 4 in [KO1], Theorem 1 in [NS1]).

The proof of this lemma is the standard one, see, for instance, [NS1,
KO1, KO2] or the proof of Proposition 4.1 in [CO]. One has to consider
the basin of attraction of the local minimum Rl,m and work out the mini-
mum of the energy on its boundary. Once this has been done, everything
follows via the general arguments in Proposition 3.7 in [OS1]. The dif-
ference with respect to the case of periodic boundary conditions is that one
must take into account situations like the one depicted in Fig. 5, that are
absent in the Ising model with periodic boundary conditions.
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We can formulate, now, the theorem which describes the exit from the
metastable phase: this theorem states that with high probability the system
will visit a particular configuration f before reaching + 1 and that the exit
time is dominated by the time the system needs to reach S.

This protocritical configuration 2P is such that all the spin are minuses
except those in the union of a A1 x (G1, — 1) rectangle, one of whose corners
coincides with one of the corner of the domain, and a unit square laying
on the border of A and touching the longer side of the rectangle (see
Fig. 6).

Setting

we consider the process la starting from — 1 and define T_1 as the last time
the configuration was — 1 before it became +1,

Fig. 6. Protocritical droplet :P

Fig. 5. Mechanisms of growth peculiar to the Ising model with free boundary conditions.
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Similarly we call Tp the first time after T _1 when a, = &,

Finally, we can state the following theorem:

Theorem 1.1. Given £>0,

N.B. Theorem 1.1 is for a fixed A; the convergence to one is not
uniform in A.

From Lemma 1.2 and Theorem 1.1 we have a rather accurate descrip-
tion of the system in the metastable phase: starting from — 1 the system
will spend a lot of time "close" to this configuration; sometimes small
droplet of pluses appear, but the system quickly goes back to —1. Only
after a long time, compared to the time these fluctuations need, the system
will nucleate the protocritical droplet 2P and it will then reach the stable
phase in a relatively short time.

It is possible to give a more detailed description of the first excursion
from — 1 to +1; one could state a result similar to the one in [S1] (see
also Theorem 3 in [KO1]). We do not enter in the details of this construc-
tion for the case of free boundary conditions, because no relevant difference
appears with respect to the case of periodic boundary conditions. Roughly
speaking one can say that the system, during the excursion from — 1 to
+ 1, will follow a rather well-defined sequence of configurations made up
of growing rectangular, almost square, droplets located at one of the four
corners of A.

The proof of Theorem 1.1 is now sketched: as in [KO1] we can define
a set A satisfying some properties which will be listed below. The construc-
tion of the set A is exactly as in [KO1], except for the fact that whenever
there is a rectangle with one side on the "border" and another side at dis-
tance one from the border of A, the rectangle is enlarged so that the latter
side also touches the border (see e.g. Fig. 4).

The relevant properties of the set A are the following:

(i) A is connected; -l e s and +1 e A.

(ii) There exists a path W connecting — 1 with P contained in A
such that
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There exists a path W connecting P with +1 contained in Ac such that

(iii) The minimal energy in oA is attained for the "protocritical"
configuration; namely

(iv) With probability greater than zero, uniformly in B, the system
starting from 9 will reach +1 before visiting — 1; namely, given e > 0

and

Using properties (i)-(iv) and Propositions 3.4, 3.7 in [OS1] we get
Theorem 1.1.

5. CONCLUDING REMARKS

In this paper we have studied metastability in the two-dimensional
Ising model on an M by M square with free boundary conditions
rigorously in the limit /? -» oo and via Monte Carlo simulations at finite
temperatures. We found good agreement between the theoretical predic-
tions and the simulations and for a large range of h and low enough tem-
peratures. The qualitative agreement persists even above one half of Tc.

Compared to periodic boundary conditions there are two relevant dif-
ferences: (i) the critical length of the droplet and hence the life time of the
metastable phase is much shorter; (ii) the protocritical droplet is always at
one of the four corners of the square.

It is clear that our analysis applies equally well to a rectangular
domain with sufficiently long sides. In fact the basic approach carries over,
in principle, to a general domain with general boundary conditions as long
as there is no wetting: see [RKLRN] for the wetting case. The protocritical
domain will always form, when ft-* oo at the place (or places) where the
energy cost, H ( P ) — H(a - 1 ) , is minimal.



Metastability in 2D Ising Model 225

ACKNOWLEDGMENTS

We are indebted to J. Marro for pointing out to us the interest of this
case in modeling relaxation in some magnetic particles [M], and to Per
Arne Rikvold and Senya Shlosman for useful comments. One of the
authors (E.C.) wishes to express his thanks to the Mathematics Depart-
ment of Rutgers University for its very kind hospitality and to Enzo
Olivieri for useful discussions. E.C. also thanks also Istituto Nazionale di
Fisica Nucleare - Sezione di Bari and Dipartimento di Fisica dell'Univer-
sita degli Studi di Bari for their financial support. Work at Rutgers was
supported by NSF Grant DMR 95-23266. JLL would also like to thank
DIMACS and its supporting agencies the NSF under contract STC-91-
19999 and the NJ Commission on Science and Technology.

REFERENCES

[B] K. Binder, Phys. Rev. B 8:3423 (1973).
[BC] G. Ben Arous and R. Cerf, Metastability of the three dimensional Ising model on

a torus at very low temperatures, Electronic Journal of Probability 1:1-55 (1996).
[BM] K. Binder and H. Muller-Krumbhaar, Phys. Rev. B 9:2328 (1974).
[BS] K. Binder and E. Stoll, Phys. Rev. Lett. 31:47 (1973).
[CGOV] M. Cassandro, A. Galves, E. Olivieri, and M. E. Vares, Metastable behavior of

stochastic dynamics: A pathwise approach, Journ. Stat. Phys. 35:603-634 (1984).
[CO] E. N. M. Cirillo and E. Olivieri, Metastability and nucleation for the Blume-

Capel model. Different mechanisms of transition, Journ. Stat. Phys. 83:473-554
(1996).

[FGRN] T. Fiig, B. M. Gorman, P. A. Rikvold, and M. A. Novotny, Phys. Rev. E 50:1930
(1994).

[GRN] C. C. A. Gunther, P. A. Rikvold, and M. A. Novotny, Phys. Rev. Lett. 71:3898
(1993); Physica A 212:194-229 (1994).

[I] S. N. Isakov, Nonanalytic feature of the first order phase transition in the Ising
model, Comm. Math. Phys. 95:427-43 (1984).

[KO1 ] R. Kotecky and E. Olivieri, Droplet dynamics for asymmetric Ising model, Journ.
Stat. Phys, 70:1121-1148(1993).

[KO2] R. Kotecky and E. Olivieri, Shapes of growing droplets - a model of escape from
a metastable phase, Journ. Stat. Phys. 75:409-507 (1994).

[Li] T. M. Ligget, Interacting Particle System (Springer-Verlag, New York).
[LNR] J. Lee, M. A. Novotny, and P. A. Rikvold, Phys. Rev. E 52:356 (1995).
[LR] O. Lanford and D. Ruelle, Observable at infinity and states with short range

correlations in statistical mechanics, Commun. Math. Phys. 13:194-215 (1969).
[M] J. Marro and J. A. Vacas, Discontinuous particle demagnetization at low tem-

perature, preprint.
[MOS] F. Martinelli, E. Olivieri, and E. Scoppola, Metastability and exponential

approach to equilibrium for low temperature stochastic Ising models, Journ. Stat.
Phys. 61:1105 (1990).

[N1] M. A. Novotny, Phys. Rev. Lett. 74:1 (1995).
[N2] M. A. Novotny, in Computer Simulation Studies in Condensed-Matter Physics IX,

D. P. Landau, K. K. Mon, and H. B. Schuttler, eds. (Springer, Berlin, 1997).



[NO] F. R. Nardi and E. Olivieri, Low temperature Stochastic dynamics for an [sing
model with alternating field, Markov Proc. and Rel, Fields 2:117-166 (1996).

[NS1] E. J. Neves and R. H. Schonmann, Critical droplets and melastability for a
Glauber dynamics at very kow temperatures, Comm. Math. Phys. 137:209 (1991).

[NS2] E. J. Neves and R. H. Schonmann, Behavior of droplets for a class of Glauber
dynamics at very low temperatures, Prob. Theor. Rel. Fields 91:331 (1992).

[OS1] E. Olivieri and E. Scoppola, Markov chains with exponentially small transition
probabilities: First exit problem from a general domain, I. The reversible case,
Journ. Stat. Phys. 79:613-647 (1995).

[OS2] E. Olivieri and E. Scoppola, Markov chains with exponentially small transition
probabilities: First exit problem from a general domain, II. The general case,
Journ. Stat. Phys. 84:987-1041 (1996).

[PL] O. Penrose and J. L. Lebowitz, Towards a rigorous molecular theory of
metastability, in Fluctuation Phenomena (second edition), E. W. Montroll and
J. L. Lebowitz, eds. (North-Holland, Physics Publishing, 1987); O. Penrose and
J. L. Lebowitz, "Molecular theory of metastability: An update," Appendix to the
reprinted edition of the article "Towards a rigorous molecular theory of meta-
stability" by the same authors. In: Fluctuation Phenomena (second edition), E. W.
Montroll and J. L. Lebowitz, eds. (Amsterdam, North-Holland Physics Pub-
lishing, 1987).

[PS1] V. Privman and L. S. Schulman, J. Phys. A 15:L321 (1982).
[PS2] V. Privman and L. S. Schulman, Journ. Stat. Phys. 31:205 (1982).
[RKLRN] H. L. Richards, M. Kolesik, P. A. Lindgard, P. A. Rikvold, and M.A. Novotny,

Effects of boundary conditions on magnetization switching in kinetic Ising models
of nanoscale ferromagnets, Phys. Rev. B 55:11521 (1997).

[RG] P. A. Rikvold and B. M. Gorman, in Annual Reviews of Computational Physics I,
D. Stauffer, ed. (World Scientific, Singapore, 1994).

[RSNR] H. L. Richards, S. W. Sides, M. A. Novotny, and P. A. Rikvold, Journ. Magnetism
Magn. Materials 150:37-50 (1995).

[RTMS] P. A. Rikvold, H. Tomita, S. Miyashita, and S. W. Sides, Phys. Rev. E 49: 5080
(1994).

[S1] R. H. Schonmann, The pattern of escape from metastability of a stochastic Ising
model, Comm. Math. Phys. 147:231-240 (1992).

[S2] R. H. Schonmann, Slow droplet-driven relaxation of stochastic Ising models in
the vicinity of the phase coexistence region, Comm. Math. Phys. 161:1-49 (1994).

[SG] P. A. Serena and N. Garcia, in Quantum Tunneling of Magnetization, QTM'94,
L. Gunther and B. Barbara, eds. (Kluwer, Dordrecht, 1995).

[SH] S. B. Shlosman, The droplet in the tube: A case of phase transition in the canoni-
cal ensemble, Comm. Math. Phys. 125:81-90 (1989).

[SS] S. Shlosman and R. H. Schonmann, preprint UCLA (1994).
[TM1 ] H. Tomita and S. Miyashita, Phys. Rev. B 46:8886 (1992).
[TM2] H. Tomita and S. Miyashita, Statistical properties of the relaxation processes of

metastable states in the kinetics Ising model ( I I ) . Free boundary conditions,
Kyoto University, preprint, 1993.

226 Cirillo and Lebowitz


